Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1367359, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660488

RESUMEN

Cryptosporidium parvum is a common cause of a zoonotic disease and a main cause of diarrhea in newborns. Effective drugs or vaccines are still lacking. Oocyst is the infective form of the parasite; after its ingestion, the oocyst excysts and releases four sporozoites into the host intestine that rapidly attack the enterocytes. The membrane protein CpRom1 is a large rhomboid protease that is expressed by sporozoites and recognized as antigen by the host immune system. In this study, we observed the release of CpRom1 with extracellular vesicles (EVs) that was not previously described. To investigate this phenomenon, we isolated and resolved EVs from the excystation medium by differential ultracentrifugation. Fluorescence flow cytometry and transmission electron microscopy (TEM) experiments identified two types of sporozoite-derived vesicles: large extracellular vesicles (LEVs) and small extracellular vesicles (SEVs). Nanoparticle tracking analysis (NTA) revealed mode diameter of 181 nm for LEVs and 105 nm for SEVs, respectively. Immunodetection experiments proved the presence of CpRom1 and the Golgi protein CpGRASP in LEVs, while immune-electron microscopy trials demonstrated the localization of CpRom1 on the LEVs surface. TEM and scanning electron microscopy (SEM) showed that LEVs were generated by means of the budding of the outer membrane of sporozoites; conversely, the origin of SEVs remained uncertain. Distinct protein compositions were observed between LEVs and SEVs as evidenced by their corresponding electrophoretic profiles. Indeed, a dedicated proteomic analysis identified 5 and 16 proteins unique for LEVs and SEVs, respectively. Overall, 60 proteins were identified in the proteome of both types of vesicles and most of these proteins (48 in number) were already identified in the molecular cargo of extracellular vesicles from other organisms. Noteworthy, we identified 12 proteins unique to Cryptosporidium spp. and this last group included the immunodominant parasite antigen glycoprotein GP60, which is one of the most abundant proteins in both LEVs and SEVs.


Asunto(s)
Cryptosporidium parvum , Vesículas Extracelulares , Proteínas Protozoarias , Esporozoítos , Vesículas Extracelulares/metabolismo , Cryptosporidium parvum/metabolismo , Esporozoítos/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/análisis , Microscopía Electrónica de Transmisión , Animales , Criptosporidiosis/parasitología , Humanos , Proteoma/análisis , Proteómica , Citometría de Flujo
2.
Parasit Vectors ; 17(1): 65, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360646

RESUMEN

BACKGROUND: Cryptosporidium spp. are common protozoa causing diarrhea in humans and animals. There are currently only one FDA-approved drug and no vaccines for cryptosporidiosis, largely due to the limited knowledge of the molecular mechanisms involved in the invasion of the pathogens. Previous studies have shown that GP60, which is cleaved into GP40 and GP15 after expression, is an immunodominant mucin protein involved in the invasion of Cryptosporidium. The protein is highly O-glycosylated, and recombinant proteins expressed in prokaryotic systems are non-functional. Therefore, few studies have investigated the function of GP40 and GP15. METHODS: To obtain recombinant GP40 with correct post-translational modifications, we used CRISPR/Cas9 technology to insert GP40 and GP15 into the UPRT locus of Toxoplasma gondii, allowing heterologous expression of Cryptosporidium proteins. In addition, the Twin-Strep tag was inserted after GP40 for efficient purification of GP40. RESULTS: Western blotting and immunofluorescent microscopic analyses both indicated that GP40 and GP15 were stably expressed in T. gondii mutants. GP40 localized not only in the cytoplasm of tachyzoites but also in the parasitophorous vacuoles, while GP15 without the GPI anchor was expressed only in the cytoplasm. In addition, a large amount of recTgGP40 was purified using Strep-TactinXT supported by a visible band of ~ 50 kDa in SDS-PAGE. CONCLUSIONS: The establishment of a robust and efficient heterologous expression system of GP40 in T. gondii represents a novel approach and concept for investigating Cryptosporidium mucins, overcoming the limitations of previous studies that relied on unstable transient transfection, which involved complex steps and high costs.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Toxoplasma , Humanos , Animales , Cryptosporidium parvum/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo , Proteínas Protozoarias/metabolismo , Mucinas/metabolismo , Glicoproteínas
3.
mBio ; 15(2): e0315823, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38265238

RESUMEN

The zoonotic Cryptosporidium parvum is a global contributor to infantile diarrheal diseases and opportunistic infections in immunocompromised or weakened individuals. Like other apicomplexans, it possesses several specialized secretory organelles, including micronemes, rhoptry, and dense granules. However, the understanding of cryptosporidial micronemal composition and secretory pathway remains limited. Here, we report a new micronemal protein in C. parvum, namely, thrombospondin (TSP)-repeat domain-containing protein-4 (CpTSP4), providing insights into these ambiguities. Immunostaining and enzyme-linked assays show that CpTSP4 is prestored in the micronemes of unexcysted sporozoites but secreted during sporozoite excystation, gliding, and invasion. In excysted sporozoites, CpTSP4 is also distributed on the two central microtubules unique to Cryptosporidium. The secretion and microtubular distribution could be completely blocked by the selective kinesin-5 inhibitors SB-743921 and SB-715992, resulting in the accumulation of CpTSP4 in micronemes. These support the kinesin-dependent microtubular trafficking of CpTSP4 for secretion. We also localize γ-tubulin, consistent with kinesin-dependent anterograde trafficking. Additionally, recombinant CpTSP4 displays nanomolar binding affinity to the host cell surface, for which heparin acts as one of the host ligands. A novel heparin-binding motif is identified and validated biochemically for its contribution to the adhesive property of CpTSP4 by peptide competition assays and site-directed mutagenesis. These findings shed light on the mechanisms of intracellular trafficking and secretion of a cryptosporidial micronemal protein and the interaction of a TSP-family protein with host cells.IMPORTANCECryptosporidium parvum is a globally distributed apicomplexan parasite infecting humans and/or animals. Like other apicomplexans, it possesses specialized secretory organelles in the zoites, in which micronemes discharge molecules to facilitate the movement and invasion of zoites. Although past and recent studies have identified several proteins in cryptosporidial micronemes, our understanding of the composition, secretory pathways, and domain-ligand interactions of micronemal proteins remains limited. This study identifies a new micronemal protein, namely, CpTSP4, that is discharged during excystation, gliding, and invasion of C. parvum sporozoites. The CpTSP4 secretion depends on the intracellular trafficking on the two Cryptosporidium-unique microtubes that could be blocked by kinesin-5/Eg5 inhibitors. Additionally, a novel heparin-binding motif is identified and biochemically validated, which contributes to the nanomolar binding affinity of CpTSP4 to host cells. These findings indicate that kinesin-dependent microtubular trafficking is critical to CpTSP4 secretion, and heparin/heparan sulfate is one of the ligands for this micronemal protein.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Humanos , Animales , Cryptosporidium parvum/metabolismo , Criptosporidiosis/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Esporozoítos/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Heparina/metabolismo
4.
Parasitol Res ; 122(11): 2621-2630, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37676305

RESUMEN

Cryptosporidium is a highly pathogenic water and food-borne zoonotic parasitic protozoan that causes severe diarrhea in humans and animals. Apicomplexan parasites invade host cells via a unique motility process called gliding, which relies on the parasite's microfilaments. Actin depolymerizing factor (ADF) is a fibrous-actin (F-actin) and globular actin (G-actin) binding protein essential for regulating the turnover of microfilaments. However, the role of ADF in Cryptosporidium parvum (C. parvum) remains unknown. In this study, we preliminarily characterized the biological functions of ADF in C. parvum (CpADF). The CpADF was a 135-aa protein encoded by cgd5_2800 gene containing an ADF-H domain. The expression of cgd5_2800 gene peaked at 12 h post-infection, and the CpADF was located in the cytoplasm of oocysts, middle region of sporozoites, and cytoplasm of merozoites. Neutralization efficiency of anti-CpADF serum was approximately 41.30%. Actin sedimentation assay revealed that CpADF depolymerized but did not undergo cosedimentation with F-actin and its ability of F-actin depolymerization was pH independent. These results provide a basis for further investigation of the roles of CpADF in the invasion of C. parvum.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Humanos , Animales , Cryptosporidium parvum/genética , Cryptosporidium parvum/metabolismo , Actinas/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Destrina/metabolismo , Criptosporidiosis/parasitología , Proteínas de Microfilamentos/metabolismo
5.
Parasit Vectors ; 16(1): 221, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37415254

RESUMEN

BACKGROUND: Cryptosporidium is second only to rotavirus as a cause of moderate-to-severe diarrhea in young children. There are currently no fully effective drug treatments or vaccines for cryptosporidiosis. MicroRNAs (miRNAs) are involved in regulating the innate immune response to Cryptosporidium parvum infection. In this study, we investigated the role and mechanism of miR-3976 in regulating HCT-8 cell apoptosis induced by C. parvum infection. METHODS: Expression levels of miR-3976 and C. parvum burden were estimated using real-time quantitative polymerase chain reaction (RT-qPCR) and cell apoptosis was detected by flow cytometry. The interaction between miR-3976 and B-cell lymphoma 2-related protein A1 (BCL2A1) was studied by luciferase reporter assay, RT-qPCR, and western blotting. RESULTS: Expression levels of miR-3976 were decreased at 8 and 12 h post-infection (hpi) but increased at 24 and 48 hpi. Upregulation of miR-3976 promoted cell apoptosis and inhibited the parasite burden in HCT-8 cells after C. parvum infection. Luciferase reporter assay indicated that BCL2A1 was a target gene of miR-3976. Co-transfection with miR-3976 and a BCL2A1 overexpression vector revealed that miR-3976 targeted BCL2A1 and suppressed cell apoptosis and promoted the parasite burden in HCT-8 cells. CONCLUSIONS: The present data indicated that miR-3976 regulated cell apoptosis and parasite burden in HCT-8 cells by targeting BCL2A1 following C. parvum infection. Future study should determine the role of miR-3976 in hosts' anti-C. parvum immunity in vivo.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , MicroARNs , Parásitos , Animales , Niño , Preescolar , Humanos , Apoptosis , Criptosporidiosis/parasitología , Cryptosporidium/genética , Cryptosporidium parvum/genética , Cryptosporidium parvum/metabolismo , MicroARNs/metabolismo , Parásitos/genética
6.
Cell Rep ; 42(7): 112680, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37384526

RESUMEN

Cryptosporidiosis is a leading cause of life-threatening diarrhea in young children in resource-poor settings. To explore microbial influences on susceptibility, we screened 85 microbiota-associated metabolites for their effects on Cryptosporidium parvum growth in vitro. We identify eight inhibitory metabolites in three main classes: secondary bile salts/acids, a vitamin B6 precursor, and indoles. Growth restriction of C. parvum by indoles does not depend on the host aryl hydrocarbon receptor (AhR) pathway. Instead, treatment impairs host mitochondrial function and reduces total cellular ATP, as well as directly reducing the membrane potential in the parasite mitosome, a degenerate mitochondria. Oral administration of indoles, or reconstitution of the gut microbiota with indole-producing bacteria, delays life cycle progression of the parasite in vitro and reduces the severity of C. parvum infection in mice. Collectively, these findings indicate that microbiota metabolites impair mitochondrial function and contribute to colonization resistance to Cryptosporidium infection.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Microbiota , Animales , Ratones , Cryptosporidium parvum/metabolismo , Criptosporidiosis/metabolismo , Criptosporidiosis/microbiología , Criptosporidiosis/parasitología , Mitocondrias/metabolismo , Indoles/farmacología , Indoles/metabolismo
7.
Vet Res ; 54(1): 40, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37138353

RESUMEN

Cryptosporidiosis is one of the main causes of diarrhea in children and young livestock. The interaction of the parasite with the intestinal host cells has not been characterized thoroughly yet but may be affected by the nutritional demand of the parasite. Hence, we aimed to investigate the impact of C. parvum infection on glucose metabolism in neonatal calves. Therefore, N = 5 neonatal calves were infected with C. parvum on the first day of life, whereas a control group was not (N = 5). The calves were monitored clinically for one week, and glucose absorption, turnover and oxidation were assessed using stable isotope labelled glucose. The transepithelial transport of glucose was measured using the Ussing chamber technique. Glucose transporters were quantified on gene and protein expression level using RT-qPCR and Western blot in the jejunum epithelium and brush border membrane preparations. Plasma glucose concentration and oral glucose absorption were decreased despite an increased electrogenic phlorizin sensitive transepithelial transport of glucose in infected calves. No difference in the gene or protein abundance of glucose transporters, but an enrichment of glucose transporter 2 in the brush border was observed in the infected calves. Furthermore, the mRNA for enzymes of the glycolysis pathway was increased indicating enhanced glucose oxidation in the infected gut. In summary, C. parvum infection modulates intestinal epithelial glucose absorption and metabolism. We assume that the metabolic competition of the parasite for glucose causes the host cells to upregulate their uptake mechanisms and metabolic machinery to compensate for the energy losses.


Asunto(s)
Enfermedades de los Bovinos , Criptosporidiosis , Cryptosporidium parvum , Glucosa , Mucosa Intestinal , Animales , Bovinos , Animales Recién Nacidos/metabolismo , Animales Recién Nacidos/parasitología , Glucemia/metabolismo , Enfermedades de los Bovinos/metabolismo , Enfermedades de los Bovinos/parasitología , Criptosporidiosis/metabolismo , Criptosporidiosis/parasitología , Cryptosporidium parvum/metabolismo , Glucosa/metabolismo , Mucosa Intestinal/metabolismo , Yeyuno/metabolismo , Masculino
8.
J Biol Chem ; 299(3): 103006, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36775128

RESUMEN

Cryptosporidium parvum is a zoonotic apicomplexan parasite and a common cause of diarrheal disease worldwide. The development of vaccines to prevent or limit infection remains an important goal for tackling cryptosporidiosis. At present, the only approved vaccine against any apicomplexan parasite targets a conserved adhesin possessing a thrombospondin repeat domain. C. parvum possesses 12 orthologous thrombospondin repeat domain-containing proteins known as CpTSP1-12, though little is known about these potentially important antigens. Here, we explore the architecture and conservation of the CpTSP protein family, as well as their abundance at the protein level within the sporozoite stage of the life cycle. We examine the glycosylation states of these proteins using a combination of glycopeptide enrichment techniques to demonstrate that these proteins are modified with C-, O-, and N-linked glycans. Using expansion microscopy, and an antibody against the C-linked mannose that is unique to the CpTSP protein family within C. parvum, we show that these proteins are found both on the cell surface and in structures that resemble the secretory pathway of C. parvum sporozoites. Finally, we generated a polyclonal antibody against CpTSP1 to show that it is found at the cell surface and within micronemes, in a pattern reminiscent of other apicomplexan motility-associated adhesins, and is present both in sporozoites and meronts. This work sheds new light on an understudied family of C. parvum proteins that are likely to be important to both parasite biology and the development of vaccines against cryptosporidiosis.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Animales , Humanos , Cryptosporidium parvum/metabolismo , Criptosporidiosis/parasitología , Criptosporidiosis/prevención & control , Glicosilación , Cryptosporidium/metabolismo , Proteínas Protozoarias/química , Esporozoítos , Trombospondinas/metabolismo
9.
mBio ; 14(2): e0326122, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36786597

RESUMEN

The apicomplexan parasite Cryptosporidium is a leading global cause of diarrheal disease, and the infection poses a particularly grave threat to young children and those with weakened immune function. Infection occurs by ingestion of meiotic spores called oocysts, and transmission relies on fecal shedding of new oocysts. The entire life cycle thus occurs in a single host and features asexual as well as sexual forms of replication. Here, we identify and locus tag two Apetala 2-type (AP2) transcription factors and demonstrate that they are exclusively expressed in male and female gametes, respectively. To enable functional studies of essential genes in Cryptosporidium parvum, we develop and validate a small-molecule-inducible gene excision system, which we apply to the female factor AP2-F to achieve conditional gene knockout. Analyzing this mutant, we find the factor to be dispensable for asexual growth and early female fate determination in vitro but to be required for oocyst shedding in infected animals in vivo. Transcriptional analyses conducted in the presence or absence of AP2-F revealed that the factor controls the transcription of genes encoding crystalloid body proteins, which are exclusively expressed in female gametes. In C. parvum, the organelle is restricted to sporozoites, and its loss in other apicomplexan parasites leads to blocked transmission. Overall, our development of conditional gene ablation in C. parvum provides a robust method for genetic analysis in this parasite that enabled us to identify AP2-F as an essential regulator of transcription required for oocyst shedding and transmission. IMPORTANCE The parasite Cryptosporidium infects millions of people worldwide each year, leading to life-threatening diarrheal disease in young children and immunosuppressed individuals. There is no vaccine and only limited treatment. Transmission occurs via the fecal-oral route by an environmentally resilient spore-like oocyst. Infection takes place in the intestinal epithelium, where parasites initially propagate asexually before transitioning to male and female gametes, with sex leading to the formation of new oocysts. The essential role of sexual development for continuous infection and transmission makes it an attractive target for therapy and prevention. To study essential genes and potential drug targets across the life cycle, we established inducible gene excision for C. parvum. We determined that the female-specific transcription factor AP2-F is not required for asexual growth and early female development in vitro but is necessary for oocyst shedding in vivo. This work enhances the genetic tools available to study Cryptosporidium gene function.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Animales , Masculino , Femenino , Oocistos/genética , Cryptosporidium parvum/genética , Cryptosporidium parvum/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Criptosporidiosis/parasitología , Estadios del Ciclo de Vida , Diarrea , Heces/parasitología
10.
mBio ; 14(1): e0306422, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36722968

RESUMEN

Cryptosporidium parvum is an enteric pathogen that invades epithelial cells in the intestine, where it resides at the apical surface in a unique epicellular location. Compared with those of related apicomplexan parasites, the processes of host cell attachment and invasion by C. parvum are poorly understood. The streamlined C. parvum genome contains numerous mucin-like glycoproteins, several of which have previously been shown to mediate cell attachment, although the majority are unstudied. Here, we identified the antigens recognized by monoclonal antibody (MAb) 1A5, which stains the apical end of sporozoites and mature merozoites. Immunoprecipitation with MAb 1A5 followed by mass spectrometry identified a heterodimer comprised of paralogous proteins which are related to additional orthologs in the genome of C. parvum and related species. Paralogous glycoproteins recognized by MAb 1A5 heterodimerize as a complex displayed on the parasite surface, and they also interact with lectins that suggest that they contain mucin-like, O-linked oligosaccharides. Although the gene encoding one of the paralogs was readily disrupted by CRISPR/Cas9 gene editing, its partner, which contains a mucin-like domain related to GP900, was refractory to deletion. Combined with the ability of MAb 1A5 to partially neutralize host cell attachment by sporozoites, these findings define a new family of secretory glycoproteins that participate in cell invasion by Cryptosporidium spp. IMPORTANCE Although Cryptosporidium is extremely efficient at penetrating mucus and invading epithelial cells in the intestine, the mechanism of cell attachment is poorly understood. To expand our understanding of this process, we characterized the antigens recognized by a monoclonal antibody that stains the apical end of invasive stages called sporozoites and merozoites. Our studies identify a family of glycoproteins that form heterodimers on the parasite cell surface to facilitate host cell attachment and entry. By further defining the role of mucin-like glycoproteins in host cell attachment, our studies may lead to strategies to disrupt cell adhesion and thereby decrease infection.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Animales , Cryptosporidium parvum/genética , Cryptosporidium parvum/metabolismo , Criptosporidiosis/parasitología , Glicoproteínas/metabolismo , Mucinas/metabolismo , Esporozoítos/metabolismo , Anticuerpos Monoclonales
11.
Parasit Vectors ; 15(1): 470, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522638

RESUMEN

BACKGROUND: Cryptosporidium parvum is an important zoonotic parasite, which not only causes economic losses in animal husbandry but also harms human health. Due to the lack of effective measures for prevention and treatment, it is important to understand the pathogenesis and survival mechanism of C. parvum. Autophagy is an important mechanism of host cells against parasite infection through key regulatory factors such as microRNAs and MAPK pathways. However, the regulatory effect of C. parvum on autophagy has not been reported. Here, we demonstrated that C. parvum manipulated autophagy through host cellular miR-26a, miR-30a, ERK signaling and P38 signaling for parasite survival. METHODS: The expression of Beclin1, p62, LC3, ERK and P38 was detected using western blotting in HCT-8 cells infected with C. parvum as well as treated with miR-26a-mimic, miR-30a-mimic, miR-26a-mimic or miR-30a-inhibitor post C. parvum infection. The qPCR was used to detect the expression of miR-26a and miR-30a and the number of C. parvum in HCT-8 cells. Besides, the accumulation of autophagosomes was examined using immunofluorescence. RESULTS: The expression of Beclin1 and p62 was increased, whereas LC3 expression was increased initially at 0-8 h but decreased at 12 h and then increased again in C. parvum-infected cells. C. parvum inhibited miR-26a-mimic-induced miR-26a but promoted miR-30a-mimic-induced miR-30a expression. Suppressing miR-30a resulted in increased expression of LC3 and Beclin1. However, upregulation of miR-26a reduced ERK/P38 phosphorylation, and inhibiting ERK/P38 signaling promoted Beclin1 and LC3 while reducing p62 expression. Treatment with miR-26a-mimic, autophagy inducer or ERK/P38 signaling inhibitors reduced but treatment with autophagy inhibitor or miR-30a-mimic increased parasite number. CONCLUSIONS: The study found that C. parvum could regulate autophagy by inhibiting miR-26a and promoting miR-30a expression to facilitate the proliferation of parasites. These results revealed a new mechanism for the interaction of C. parvum with host cells.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , MicroARNs , Animales , Humanos , Beclina-1/genética , Beclina-1/metabolismo , Beclina-1/farmacología , Cryptosporidium parvum/genética , Cryptosporidium parvum/metabolismo , Autofagia , MicroARNs/metabolismo
12.
Parasit Vectors ; 15(1): 441, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36434735

RESUMEN

BACKGROUND: Cryptosporidium species are zoonotic protozoans that are important causes of diarrhoeal disease in both humans and animals. Non-coding RNAs (ncRNAs) play an important role in the innate immune defense against Cryptosporidium infection, but the underlying molecular mechanisms in the interaction between human ileocecal adenocarcinoma (HCT-8) cells and Cryptosporidium species have not been entirely revealed. METHODS: The expression profiles of messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) in the early phase of infection of HCT-8 cells with Cryptosporidium parvum and at 3 and 12 h post infection were analyzed using the RNA-sequencing technique. The biological functions of differentially expressed RNAs (dif-RNAs) were discovered through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The targeting relationships between three ncRNAs and mRNAs were analyzed using bioinformatics methods, followed by building a competing endogenous RNA (ceRNA) regulatory network centered on miRNAs. RESULTS: After strictly filtering the raw data, our analysis revealed 393 dif-lncRNAs, 69 dif-miRNAs and 115 dif-mRNAs at 3 hpi, and 450 dif-lncRNAs, 129 dif-miRNAs, 117 dif-mRNAs and one dif-circRNA at 12 hpi. Of these, 94 dif-lncRNAs, 24 dif-miRNAs and 22 dif-mRNAs were detected at both post-infection time points. Eleven dif-lncRNAs, seven dif-miRNAs, eight dif-mRNAs and one circRNA were randomly selected and confirmed using the quantitative real-time PCR. Bioinformatics analyses showed that the dif-mRNAs were significantly enriched in nutritional absorption, metabolic processes and metabolism-related pathways, while the dif-lncRNAs were mainly involved in the pathways related to the infection and pathogenicity of C. parvum (e.g. tight junction protein) and immune-related pathways (e.g. cell adhesion molecules). In contrast, dif-miRNAs and dif-circRNA were significantly enriched in apoptosis and apoptosis-related pathways. Among the downregulated RNAs, the miRNAs has-miR-324-3p and hsa-miR-3127-5p appear to be crucial miRNAs which could negatively regulate circRNA, lncRNA and mRNA. CONCLUSIONS: The whole transcriptome profiles of HCT-8 cells infected with C. parvum were obtained in this study. The results of the GO and KEGG pathway analyses suggest significant roles for these dif-RNAs during the course of C. parvum infection. A ceRNA regulation network containing miRNA at its center was constructed for the first time, with hsa-miR-324-3p and hsa-miR-3127-5p being the crucial miRNAs. These findings provide novel insights into the responses of human intestinal epithelial cells to C. parvum infection.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Circular/genética , Cryptosporidium parvum/genética , Cryptosporidium parvum/metabolismo , Criptosporidiosis/genética , Redes Reguladoras de Genes , Regulación Neoplásica de la Expresión Génica , Cryptosporidium/genética , MicroARNs/genética , MicroARNs/metabolismo , Perfilación de la Expresión Génica , ARN Mensajero/genética , ARN Mensajero/metabolismo
13.
Virulence ; 13(1): 1632-1650, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36097362

RESUMEN

Cryptosporidium parvum is a leading cause of diarrhoeal illness worldwide being a significant threat to young children and immunocompromised patients, but the pathogenesis caused by this parasite remains poorly understood. C. parvum was recently linked with oncogenesis. Notably, the mechanisms of gene expression regulation are unexplored in Cryptosporidium and little is known about how the parasite impact host genome regulation. Here, we investigated potential histone lysine methylation, a dynamic epigenetic modification, during the life cycle of the parasite. We identified SET-domain containing proteins, putative lysine methyltransferases (KMTs), in the C. parvum genome and classified them phylogenetically into distinct subfamilies (namely CpSET1, CpSET2, CpSET8, CpKMTox and CpAKMT). Our structural analysis further characterized CpSET1, CpSET2 and CpSET8 as histone lysine methyltransferases (HKMTs). The expression of the CpSET genes varies considerably during the parasite life cycle and specific methyl-lysine antibodies showed dynamic changes in parasite histone methylation during development (CpSET1:H3K4; CpSET2:H3K36; CpSET8:H4K20). We investigated the impact of C. parvum infection on the host histone lysine methylation. Remarkably, parasite infection led to a considerable decrease in host H3K36me3 and H3K27me3 levels, highlighting the potential of the parasite to exploit the host epigenetic regulation to its advantage. This is the first study to describe epigenetic mechanisms occurring throughout the parasite life cycle and during the host-parasite interaction. A better understanding of histone methylation in both parasite and host genomes may highlight novel infection control strategies.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Preescolar , Cryptosporidium parvum/genética , Cryptosporidium parvum/metabolismo , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Humanos , Lisina/genética , Lisina/metabolismo , Metilación
14.
Int J Mol Sci ; 23(14)2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35886965

RESUMEN

The protozoan pathogen Cryptosporidium parvum infects intestinal epithelial cells and causes diarrhea in humans and young animals. Among the more than 20 genes encoding insulinase-like metalloproteinases (INS), two are paralogs with high sequence identity. In this study, one of them, INS-16 encoded by the cgd3_4270 gene, was expressed and characterized in a comparative study of its sibling, INS-15 encoded by the cgd3_4260 gene. A full-length INS-16 protein and its active domain I were expressed in Escherichia coli, and antibodies against the domain I and an INS-16-specific peptide were produced in rabbits. In the analysis of the crude extract of oocysts, a ~60 kDa fragment of INS-16 rather than the full protein was recognized by polyclonal antibodies against the specific peptide, indicating that INS-16 undergoes proteolytic cleavage before maturation. The expression of the ins-16 gene peaked at the invasion phase of in vitro C. parvum culture, with the documented expression of the protein in both sporozoites and merozoites. Localization studies with antibodies showed significant differences in the distribution of the native INS-15 and INS-16 proteins in sporozoites and merozoites. INS-16 was identified as a dense granule protein in sporozoites and macrogamonts but was mostly expressed at the apical end of merozoites. We screened 48 candidate INS-16 inhibitors from the molecular docking of INS-16. Among them, two inhibited the growth of C. parvum in vitro (EC50 = 1.058 µM and 2.089 µM). The results of this study suggest that INS-16 may have important roles in the development of C. parvum and could be a valid target for the development of effective treatments.


Asunto(s)
Cryptosporidium parvum , Insulisina , Metaloproteasas , Proteínas Protozoarias , Animales , Criptosporidiosis/metabolismo , Cryptosporidium/metabolismo , Cryptosporidium parvum/metabolismo , Insulisina/metabolismo , Metaloproteasas/metabolismo , Simulación del Acoplamiento Molecular , Proteínas Protozoarias/metabolismo , Conejos , Esporozoítos/metabolismo
15.
Microb Pathog ; 170: 105679, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35843442

RESUMEN

Cryptosporidium parvum is an obligate protozoan parasite invading epithelial cells of small intestine of human and animals, and causing diarrheal disease. In apicomplexan parasites, calcium signaling can regulate many essential biological processes such as invasion and migration. As the main intracellular receptor for calcium ions, calmodulins control the activities of hundreds of enzymes and proteins. Calmodulin-like protein (CML) is an important member of the calmodulin family and may play a key role in C. parvum, however, the actual situation is still not clear. The present study aimed to identify the parasite interaction partner proteins of C. parvum calmodulin-like protein (CpCML). By constructing the cpcml bait plasmid, 5 potential CpCML - interacting proteins in C. parvum oocyst were screened by yeast-two-hybrid system (Y2H). Bimolecular fluorescence complementation (BiFC) and Co-immunoprecipitation (Co-IP) were performed as subsequent validations. Fibrillarin RNA methylase (FBL) was identified via this screening method as CpCML interacting protein in C. parvum. The identification of this interaction made it possible to get a further understanding of the function of CpCML and its contribution to the pathogenicity of C. parvum.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Animales , Calmodulina/genética , Calmodulina/metabolismo , Proteínas Cromosómicas no Histona , Criptosporidiosis/parasitología , Cryptosporidium/genética , Cryptosporidium parvum/genética , Cryptosporidium parvum/metabolismo , Humanos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , ARNt Metiltransferasas
16.
Microb Genom ; 8(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35536609

RESUMEN

Small and intermediate-size noncoding RNAs (sRNAs and is-ncRNAs) have been shown to play important regulatory roles in the development of several eukaryotic organisms. However, they have not been thoroughly explored in Cryptosporidium parvum, an obligate zoonotic protist parasite responsible for the diarrhoeal disease cryptosporidiosis. Using Illumina sequencing of a small RNA library, a systematic identification of novel small and is-ncRNAs was performed in C. parvum excysted sporozoites. A total of 79 novel is-ncRNA candidates, including antisense, intergenic and intronic is-ncRNAs, were identified, including 7 new small nucleolar RNAs (snoRNAs). Expression of select novel is-ncRNAs was confirmed by RT-PCR. Phylogenetic conservation was analysed using covariance models (CMs) in related Cryptosporidium and apicomplexan parasite genome sequences. A potential new type of small ncRNA derived from tRNA fragments was observed. Overall, a deep profiling analysis of novel is-ncRNAs in C. parvum and related species revealed structural features and conservation of these novel is-ncRNAs. Covariance models can be used to detect is-ncRNA genes in other closely related parasites. These findings provide important new sequences for additional functional characterization of novel is-ncRNAs in the protist pathogen C. parvum.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Parásitos , Animales , Cryptosporidium/genética , Cryptosporidium parvum/genética , Cryptosporidium parvum/metabolismo , Genómica , Parásitos/genética , Parásitos/metabolismo , Filogenia , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , ARN no Traducido/genética
17.
Parasit Vectors ; 15(1): 170, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581607

RESUMEN

BACKGROUND: Cryptosporidium parvum is a zoonotic parasite and member of the phylum Apicomplexa with unique secretory organelles, including a rhoptry, micronemes and dense granules that discharge their contents during parasite invasion. The mucin-like glycoprotein GP900 with a single transmembrane domain is an immunodominant antigen and micronemal protein. It is relocated to the surface of excysted sporozoites and shed to form trails by sporozoites exhibiting gliding motility (gliding sporozoites). However, the biological process underlying its relocation and shedding remains unclear. The primary aim of this study was to determine whether GP900 is present as a transmembrane protein anchored to the plasma membrane on the surface of sporozoites and whether it is cleaved before being shed from the sporozoites. METHODS: Two anti-GP900 antibodies, a mouse monoclonal antibody (mAb) to the long N-terminal domain (GP900-N) and a rabbit polyclonal antibody (pAb) to the short C-terminal domain (GP900-C), were produced for the detection of intact and cleaved GP900 proteins in sporozoites and other parasite developmental stages by microscopic immunofluorescence assay and in discharged molecules by enzyme-linked immunosorbent assay. RESULTS: Both anti-GP900 antibodies recognized the apical region of unexcysted and excysted sporozoites. However, anti-GP900-N (but not anti-GP900-C) also stained both the pellicles/surface of excysted sporozoites and the trails of gliding sporozoites. Both antibodies stained the intracellular meronts, both developing and developed, but not the macro- and microgamonts. Additionally, the epitope was recognized by anti-GP900-N (but not anti-GP900-C) and detected in the secretions of excysted sporozoites and intracellular parasites. CONCLUSIONS: GP900 is present in sporozoites and intracellular meronts, but absent in sexual stages. It is stored in the micronemes of sporozoites, but enters the secretory pathway during excystation and invasion. The short cytoplasmic domain of GP900 is cleaved in the secretory pathway before it reaches the extracellular space. The molecular features and behavior of GP900 imply that it plays mainly a lubrication role.


Asunto(s)
Cryptosporidium parvum , Proteínas Protozoarias/metabolismo , Animales , Criptosporidiosis/parasitología , Cryptosporidium parvum/metabolismo , Glicoproteínas/metabolismo , Lubrificación , Ratones , Mucinas/metabolismo , Conejos , Vías Secretoras , Esporozoítos/metabolismo
18.
Folia Microbiol (Praha) ; 67(4): 625-631, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35325408

RESUMEN

Cryptosporidium parvum infects enterocytes in diverse vertebrates, including humans, and causes diarrheal illness. However, no effective drugs are available for this protozoan infection. The P23 protein of C. parvum is a protective antigen, considered a potential candidate for developing an effective vaccine against cryptosporidiosis. In this study, the complementary DNA (cDNA) of the p23 gene was subcloned to Escherichia coli DH5α, with one nucleotide difference. The constructed plasmid pNZ8149-P23 was transferred by electroporation to Lactococcus lactis NZ3900, and the recombinant L. lactis NZ3900/pNZ8149-P23 strain was screened in Elliker-medium by adding bromocresolpurple indicator. A 23-kDa protein was detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) after nisin induction in LM17 broth medium, suggesting that P23 protein was in the form of glycosylation. Simultaneously, an optimal induction time of 9 h was determined, and the density of OD600 = 2.7 was tested. Through western blot and indirect immunofluorescence (IIF) analysis, the immunocompetence of expressed P23 antigen was identified, and its location of release to the cell interior of recombinant L. lactis was manifested. The first report of a food-grade genetically engineered L. lactis strain expressing a P23 antigen of C. parvum is herein presented. This result provides a novel and safe utilization method of P23 against C. parvum infection.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Lactococcus lactis , Animales , Criptosporidiosis/prevención & control , Cryptosporidium/metabolismo , Cryptosporidium parvum/genética , Cryptosporidium parvum/metabolismo , Humanos , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Piridinolcarbamato , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
J Mol Graph Model ; 111: 108108, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34911011

RESUMEN

Cryptosporidium parvum (Cp) causes a gastro-intestinal disease called Cryptosporidiosis. C. parvum Inosine 5' monophosphate dehydrogenase (CpIMPDH) is responsible for the production of guanine nucleotides. In the present study, 37 known urea-based congeneric compounds were used to build a 2D and 3D QSAR model against CpIMPDH. The built models were validated based on OECD principles. A deep learning model was adopted from a framework called Deep Purpose. The model was trained with 288 known active compounds and validated using a test set. From the training set of the 3D QSAR, a pharmacophore model was built and the best pharmacophore hypotheses were scored and sorted using a phase-hypo score. A phytochemical database was screened using both the pharmacophore model and a deep learning model. The screened compounds were considered for glide XP docking, followed by quantum polarized ligand docking. Finally, the best compound among them was considered for molecular dynamics simulation study.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Aprendizaje Profundo , Cryptosporidium/metabolismo , Cryptosporidium parvum/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , IMP Deshidrogenasa/metabolismo , Inosina , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad Cuantitativa
20.
Parasit Vectors ; 14(1): 484, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34548103

RESUMEN

This letter responds to comments on our article (Yin YL et al., Parasit Vectors, 10.1186/s13071-021-04739-w) by Yuqing Wang and colleagues, who wrote a letter entitled "Microarray analysis of circular RNAs in HCT-8 cells infected with Cryptosporidium parvum" and discussed statistical procedures for microarray analysis during C. parvum infection. To further confirm our data, in this letter, a common R package for analyses of differentially expressed genes, namely DESeq2, with Benjamini-Hochberg correction, was used to analyze our microarray data and identified 26 significantly differentially expressed circRNAs using adjusted P value < 0.05 and | Log2 (fold change [FC]) | ≥ 1.0, including our circRNA ciRS-7 of interest. Therefore, the protocol for selecting circRNAs of interest for further study in our article is acceptable and did not affect the subsequent scientific findings in our article.


Asunto(s)
Criptosporidiosis/parasitología , Cryptosporidium parvum/genética , ARN Circular/genética , ARN Protozoario/genética , Cryptosporidium parvum/metabolismo , Perfilación de la Expresión Génica , Humanos , ARN Circular/metabolismo , ARN Protozoario/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA